Chem. Ber. 109, 1075-1088 (1976)

Kernresonanzspektroskopische Untersuchungen an Bor-Verbindungen, X¹

¹¹B-, ¹⁴N- und ¹H-Kernresonanzuntersuchungen an borylsubstituiertem Thiophen, Furan, N-Methylpyrrol und verwandten Systemen. Beurteilung der Wechselwirkung zwischen sp²-hybridisiertem Bor und π -Systemen

Bernd Wrackmeyer und Heinrich Nöth*

Institut für Anorganische Chemie der Universität München, D-8000 München 2, Meiserstr. 1

Eingegangen am 21. Juli 1975

Es werden die δ^{11} B-Daten einer Reihe von Boranen des Typs $R_{3-n}BX_n$ (R = Alkyl; X = N(CH₃)₂, Cl, Br; n = 0, 1, 2) und $R'_{3-n}BX_n$ (R' = Phenyl, 2- und 3-Thienyl, 1-Methyl-2-pyrrolyl, 2-Furyl, Cyclopentadienyl, Vinyl, Cyclopropyl; X = Alkyl, N(CH₃)₂, Cl, Br; n = 0, 1, 2) mitgeteilt. Der Vergleich beider Reihen läßt eine Zunahme der π -Rückbindung vom Ringsystem zum B-Atom in der Reihe Phenyl < 3-Thienyl < 2-Thienyl < 1-Methyl-2-pyrrolyl < 2-Furyl erkennen, die mit der Abnahme der "Aromatizität" der Ringsysteme in Einklang steht. Bei den Cyclopentadienylboranen führt das konjugierte Doppelbindungssystem, verglichen mit den Vinylboranen, zu einer Hochfeldverschiebung von δ^{11} B. Präparative Methoden zur Darstellung der in 2-Stellung borylierten Heteroaromaten werden mitgeteilt.

Nuclear Magnetic Resonance Studies on Boron Compounds, X¹⁾

¹¹B, ¹⁴N, and ¹H N. M. R. Studies on Boryl-substituted Thiophene, Furan, and *N*-Methylpyrrole and Related Systems: Interaction of sp²-Boron Atoms with π-Systems

 δ^{11} B data of $R_{3-n}BX_n$ (R = alkyl; X = N(CH₃)₂, Cl, Br; n = 0, 1, 2) and $R'_{3-n}BX_n$ (R' = phenyl, 2- and 3-thienyl, 1-methyl-2-pyrrolyl, 2-furyl, cyclopentadienyl, vinyl, cyclopropyl; X = alkyl, N(CH₃)₂, Cl, Br; n = 0, 1, 2) are reported. A comparison of the two series points to increasing π -back-bonding from the ring systems to boron in the series phenyl < 3-thienyl < 2-thienyl < 1methyl-2-pyrrolyl < 2-furyl, which is compatible with the decrease of "aromaticity" of the cyclic systems. The influence of the conjugated double-bond system in the cyclopentadienyl group leads to a high field shift of the ¹¹B resonance relative to that of the vinylboranes. Preparative methods for the synthesis of the five-membered heteroaromatic rings borylated in the 2-position are reported.

Um Informationen über die Wechselwirkung des π -Elektronensystems von Vinyl- oder Phenylgruppen, die an dreifach koordiniertes Bor gebunden sind, mit dem p_z-Orbital des Bors zu erhalten, wurden die verschiedensten physikalischen Methoden eingesetzt:

¹⁾ IX. Mitteil.: W. McFarlane, B. Wrackmeyer und H. Nöth, Chem. Ber. 108, 3831 (1975).

¹¹B-NMR-²⁾ und ¹³C-NMR-Spektroskopie³⁾, Polarographie⁴⁾, UV-Spektroskopie⁵⁾, Röntgenstrukturuntersuchungen^{6a, b)} und Elektronenbeugung^{6c)}, Mikrowellenspektroskopie⁷⁾, Dipolmomentbestimmung⁸⁾, PE-Spektroskopie⁹⁾ sowie IR- und Raman-Spektroskopie¹⁰⁾. Die pK_a-Werte von Borsäuren und Carbonsäuren des Benzols, Thiophens und Furans unterliegen demselben Substituenteneinfluß¹¹⁾, d. h. die Wirkung mesomerer und induktiver Effekte bei diesen Säure-Reihen ist identisch. Da δ^{11} B in besonderem Maße vom paramagnetischen Term der Abschirmkonstante beeinflußt wird und δ^{11} B für viele Boran-Derivate linear mit der π -Elektronendichte (q_c^{π}) am Boratom korreliert¹²⁾, untersuchten wir eine Reihe von borylsubstituierten cyclischen 6 π -Elektronen-Systemen mittels¹¹B-Kernresonanzspektroskopie. Die ¹¹B-NMR-Daten sollten zusammen mit weiteren NMR-Werten über die Störung des 6 π -Elektronensystems dieser Ringe durch die Borylgruppe Auskunft geben.

Wie soeben erwähnt, kann man davon ausgehen, daß δ^{11} B von der π -Elektronendichte am Boratom kontrolliert wird¹²). Außerdem nehmen wir an, daß in den untersuchten Verbindungen Anisotropieeffekte nicht groß bzw. konstant sind. Unter dieser Voraussetzung sollten die δ^{11} B-Werte der in Tab. 1 aufgeführten Verbindungen die π -Rückbindung der Substituenten widerspiegeln. Als Maß dafür kann man in erster Näherung die dort aufgeführten $\Delta\delta^{11}$ B-Werte ansehen, d. h. die auf die Alkylborane $R_{3-n}BX_n$ normierten chemischen Verschiebungen von $R'_{3-n}BX_n$. Danach ergibt sich folgende Abstufung für R':

$$\sqrt[]{O} > \sqrt[]{N} > \sqrt[]{S} > \sqrt[]{S} > \sqrt[]{S} > CH_2 = C'_{H} > (C_{H_2} = C'_{H_2})$$

Soweit diese Reihe cyclische 6π -Elektronensysteme betrifft, entspricht sie der Abstufung der π -Ladungsdelokalisierung¹³⁾. Zu derselben Folgerung führen die ¹¹B-NMR-Daten der Tab. 2. Hier sind zunächst Borane aufgeführt, die neben den fünf- und sechsgliedrigen

- ²⁾ ^{2a)} C. D. Good und D. M. Ritter, J. Amer. Chem. Soc. 84, 1162 (1962). ^{2b)} H. Nöth und H. Vahrenkamp, Chem. Ber. 99, 1049 (1966). - ^{2c)} A. H. Cowley und T. A. Furtsch, J. Amer. Chem. Soc. 91, 39 (1969).
- ³⁾ ³ ⁽⁴⁾ L. W. Hall, D. W. Lowmann, P. D. Ellis und J. D. Odom, Inorg. Chem. 14, 580 (1975). –
 ^{3b)} Y. Yamamoto und I. Moritani, Chem. Lett. 1975, 57. ^{3c)} L. W. Hall, J. O. Odom und P. D. Ellis, J. Amer. Chem. Soc. 97, 4527 (1975).
- ^{4) 4a)} H. Bock und W. Fuss, Z. Naturforsch., Teil B 26, 525 (1971). ^{4b)} R. Schwerthöffer, Dissertation, Univ. München 1974. ^{4c)} T. J. du Pont und J. L. Mills, Abstr. of Papers, 167th Int. Meet., Am. Chem. Soc. März 1974, INOR 189.
- ⁵⁾ ^{5a} B. G. Ramsey, Electronic Transitions in Organometalloids, Academic Press, New York 1969. ^{5b} N. L. Allinger und J. H. Siefert, J. Amer. Chem. Soc. 97, 752 (1975).
- ⁶⁾ ^{6a)} J. F. Blount, P. Finoccchiaro, G. Gust und K. Mislow, J. Amer. Chem. Soc. 95, 7158 (1973). –
 ^{6b)} F. Zettler, H. D. Hausen und H. Hess, J. Organomet. Chem. 72, 157 (1974). ^{6c)} A. Food, B. Beagley, W. Reade und I. A. Steer, J. Mol. Struct. 24, 131 (1975).
- ⁷⁾ ^{7a} J. R. Durig, R. O. Carter und J. D. Odom, Inorg. Chem. **13**, 701 (1974). ^{7b} D. Christen, D. G. Lister und J. Sheridan, J. Chem. Soc., Faraday Trans. II **70**, 1953 (1974).
- ⁸⁾ M. Kämper, Dissertation, Univ. München 1968.
- ⁹⁾ A. K. Holliday, A. F. Neville, R. S. W. Johnstone und W. Reade, Chem. Commun. 1971, 51.
- ¹⁰⁾ ^{10a)} A. K. Holliday, W. Reade, K. M. Seddon und I. A. Steer, J. Organomet. Chem. 67, 1 (1974). –
 ^{10b)} J. D. Odom, L. W. Hall, S. Riethmiller und J. R. Durig, Inorg. Chem. 13, 170 (1974).
- ¹¹⁾ B. P. Roques, D. Florentin und M. Callauquin, J. Org. Chem. 12, 195 (1975).
- ¹²⁾ J. Kroner, D. Nölle und H. Nöth, Z. Naturforsch., Teil B 28, 416 (1973).
- ¹³⁾ E. Heilbronner und H. Bock, Das HMO-Modell und seine Anwendungen, Verlag Chemie, Weinheim 1968.

Tab. 1. Chemische Verschiebungen δ^{11} B von Triorganylboranen sowie Phenyl-, Thienyl-, 1-Methyl-2-pyrrolyl-, Furyl-, Cyclopentadienyl-, Vinyl- und Cyclopropyl-organylboranen

	Verbindung	δ ¹¹ B (ppm)	Δδ ¹¹ B*) (ppm)		Verbindung	δ ¹¹ B (ppm)	Δδ ¹¹ B ^{s)} (ppm)
1 -	B(CH ₃) ₃	-86 ^{b)}	_	16	H ₃ C B(CoHe)a	70.7 °)	+ 15.8
2	B(C ₂ H ₅) ₃	-86.5 ^{b)}	. ,	17	(CH ₃) ₂ B-CH=CH ₂	- 74.5 ^{r)}	+11.5
3	B- CH2]4-B	-92.5°)		18	(CH3)2B-	-81.8 ^{g)}	+4.2
4	⊜₽	- 77.5	+ 9.0	19	H ₃ C-B	- 70.6	+ 15.4
5	Св-	- 84.5	+8.0	20	_{Н3} С−в(⟨⟨S⟩⟩)	- 57.0	+ 29.0
6	$\langle S \rangle_{B(CH_3)_2}$	- 70.2	+15.8	21	$C_2H_3B(\sqrt{S})$ d)	- 57.8	+ 28.7
7	$\int_{S} H_{B(C_2H_5)_2}$	- 70.4	+15.6				
8	⟨ _S ↓ _B	- 76.0	+ 16.5	22	$C_2H_5B\left(\left(S \right) \right)_{C_2H_5}$	- 55.8	+ 30.7
9	S B	- 79.0	+13.5	23	$C_2H_5B\left(\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	54.7	+ 31.9
10	$H_{3}C \int_{S} B(C_{2}H_{5})_{2}$	- 69.4	+ 17.5	24	$H_3CB(CH=CH_2)_2$	-64.6 ^{f)}	+21.4
11		- 66.4	+ 20.1	25	в	-60.2 ^{f)}	+ 26.0
12	ĊH3	- 69.6	+22.9	26	в	-47.3	+ 38.7
13		- 67.6	+ 18.9	27	$\mathbf{B} \begin{pmatrix} \mathbf{N} \\ \mathbf{N} \\ \mathbf{CH}_{3} \end{pmatrix}^{3} \mathbf{d} $	- 44.3	+41.7
14	$H_{3C} O B(CH_{3})_{2}^{d)}$	- 66.2	+19.8	28	в	- 35.0	+ 51.0
15	$\bigcirc_{B(C_2H_\delta)_2}$	— 71.4°)	+15.1	29	В(СН=СН ₂)3	-55.2 ^{f)}	+ 30.8

^{a)} $\Delta \delta^{11} \mathbf{B} = \delta^{11} \mathbf{B} (\geq = \leq_{\mathbf{B}}) - \delta^{11} \mathbf{B} (\mathbf{R} - \mathbf{B} \leq); \mathbf{R} = \mathrm{Alkyl},$

^{b)} l. c. ^{2b)}.

¹⁰ 1. c. ²⁰.
²¹ H. Nöth und B. Wrackmeyer, Chem. Ber. 107, 3089 (1974).
⁴¹ Die Verbindungen konnten bisher noch nicht analysenrein hergestellt werden und sind lediglich durch ihre ³H- und ¹³B-NMR-Spektren charakterisiert.
⁴¹ 1. c. ¹⁶.
⁴² 1. c. ²⁶.

^{g)} 1. c. ^{2c)}.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Verbindung	δ ^{1 1} Β (ppm)	Δδ ¹¹ Β ^{a)} (ppm)		Verbindung	δ ¹¹ B Δ (ppm) (δ ¹¹ B ^{a)} ppm)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.30	B[N(CH ₃) ₂] ₃	- 27.3 ^{b)}	-	50	⟨¯}−₿⟨ ^{CH} ₃	- 42.7	+ 1.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	CH3B[N(CH3)2]2	- 33.5 ^{b)}	-		N(CH ₃) ₈		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	(CH ₃) ₂ BN(CH ₃) ₂	-44.6 ^{b)}	_	51	$(CH_3)_2N \xrightarrow{B} S \xrightarrow{CH_3} N(CH_3)_2$	- 39.7	+4.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	BC1 ³	-46.5 ^{b)}	-	52	⟨ _N ⟩ _B , ^{CH} ₃	- 40.0	+ 4.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	CH3BCl2	-62.2 ^{b)}	-		H ₃ C N(CH ₃) ₂		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	(CH ₃) ₂ BC1	— 77.0 ^{ь)}	_	53	li ₂ C=CH-B	- 39.5 ^{f)}	+ 5.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	(CH ₃) ₂ BBr	-78.8 ^{b)}	-	54	G → B CH3 g	- 73.0	+ 5.8
$55 \qquad \qquad 55 \qquad \qquad 56 \qquad \qquad 55 \qquad \qquad 56 \qquad \qquad 56 \qquad \qquad 56 \qquad \qquad 56 \qquad \qquad 57 \qquad \qquad 56 \qquad \qquad 57 \qquad \qquad 58 \qquad \qquad $	37	$B[N(CH_3)_2]_2$	— 32.5 ^{ь)}	+ 1.0		Br		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20		20.0	1.25	55	(S) B CH ₃ g)	62.5	+ 16.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	⁽ S [™] B[N(CH ₃) ₂] ₂	- 30.0	+ 3.3	56		41,8 ^{b)}	+2.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	$\left\langle N \right\rangle_{B[N(CH_3)_2]_2}$	29.8	+ 3.7	_			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ong			5/	(S) BN(CH ₃)2	34.3	+ 10.3
41 $(\sum_{n=1}^{N})_{B[N(CH_3)_2]_2}^{2} - 26.1^{h})$ 42 $CH_2=CH-B[N(CH_3)_2]_2 - 30.2 + 3.3$ 59 $(\sum_{j=2}^{N})_{j=2}^{BN(CH_3)_2} = 25.2 + 1^{h}$ 43 $(\sum_{j=2}^{n})_{BCl_2}^{2} - 54.8^{h}) + 7.4$ 60 $(CH_2=CH)_2BN(CH_3)_2 - 37.0 + 7.4$ 44 $(\sum_{j=2}^{N})_{BCl_2}^{2} - 48.5 + 13.7$ 61 $((\sum_{j=2}^{n})_{j=2}^{BC(1)} - 61.0^{h}) + 16$ 45 $(\sum_{j=2}^{N})_{BCl_2}^{2} - 49.1 + 13.1$ 62 $((\sum_{j=2}^{n})_{j=2}^{BC(1)} - 61.0^{h}) + 16$ 46 $H_3C = CH_3CH_2 - 44.6 + 17.6$ 63 $((\sum_{j=2}^{n})_{j=2}^{BC(1)} g) - 43.1 + 33.2$ 47 $(\sum_{j=2}^{n})_{BCl_2}^{2} - 51.0^{c_j} + 11.2$ $(\sum_{j=2}^{n})_{j=2}^{BC(1)} g) - 40.0 + 3.2$	40	CABIN(CH3)2]2	-28.1	+ 5.4	58	($_{g)} - 31.8$	+12.8
$42 CH_{2}=CH-B[N(CH_{3})_{2}]_{2} -30.2 +3.3 59 \qquad \left(\left\langle \bigcup_{2}\right\rangle_{2}^{BN(CH_{2})_{2}}\right)_{2} = 25.2 +1^{4}$ $43 \left(\bigcup_{2}-BCl_{2}\right)_{2} = -54.8^{b} + 7.4 60 \qquad (CH_{2}=CH)_{2}BN(CH_{2})_{2} = -37.0 +7^{2}$ $44 \left\langle \bigcup_{3}\right\rangle_{BCl_{2}} = -48.5 +13.7 61 \qquad \left(\left\langle \bigcup_{2}\right\rangle_{2}^{BC} = -61.0^{b} \right) + 16^{2}$ $45 \left\langle \bigcup_{1}\right\rangle_{BCl_{2}} = -49.1 +13.1 62 \qquad \left(\left\langle \bigcup_{2}\right\rangle_{2}^{BC} = -48.5 +23^{2}$ $46 H_{3}C \wedge \bigcup_{2} = CH_{2}Cl_{2} \qquad -44.6 +17.6 63 \qquad \left(\left\langle \bigcup_{3}\right\rangle_{2}^{BC1} = g\right) -43.1 +33^{2}$ $47 \left(\bigcup_{3}\right)_{BCl_{2}} = -51.0^{c^{2}} +11.2 \qquad CH_{3} G^{2} G^{2} $	41	BIN(CH3)2]2	- 26.1 ^{b)}			$\binom{N}{l}_{2}^{2}$ CH ₃		
43 $\bigcirc -BCl_2$ -54.8 ^b) +7.4 60 $(CH_2=CH)_2BN(CH_3)_2$ -37.0 +7 44 $\langle S \rangle_{BCl_2}$ -48.5 +13.7 61 $\langle \bigcirc D \rangle_2BCl$ -61.0 ^b) +16 45 $\langle N \rangle_{BCl_2}$ -49.1 +13.1 62 $\langle \langle S \rangle_2BCl$ -48.5 +23 46 $H_3C \land O \rangle_{BCl_2}$ -44.6 +17.6 63 $\langle \langle N \rangle_2BCl$ g) -43.1 +33 47 $\langle D \rangle_{BCl_2}$ -51.0 ^c) +11.2 CH_3 48 $H_2C=CH=BCl_2$ -52.4 ^d) +9.8 64 $\langle \langle O \rangle_2BCl$ g) -40.0 +3	42	$CH_2 = CH - B[N(CH_3)_2]_2$	- 30.2	+ 3.3	59	$\left(\bigcup_{O} \right)_{BN(CH_3)_2}$	_{g)} – 25.2	+19.4
$44 \qquad \sqrt[4]{_{S}}_{BCl_{2}} \qquad -48.5 \qquad +13.7 61 \qquad (\sqrt[4]{_{L}}_{1}^{BCl} \qquad -61.0^{10} \qquad +10.0^{10} \qquad +10.0^{1$	43	BC12	— 54.8 ^{ъ)}	+ 7.4	60	(CH ₂ =CH) ₂ BN((11 ₃) ₂	- 37.0	+ 7.6
45 $\sqrt[n]{_{\rm BCl_2}}$ -49.1 +13.1 62 $\sqrt[n]{_{\rm S}}_{_{2}}$ -48.5 +22 46 $_{\rm H_3C}$ $\sqrt[n]{_{\rm BCl_2}}$ -44.6 +17.6 63 $\sqrt[n]{_{\rm S}}_{_{2}}$ g) -43.1 +33 47 $\sqrt[n]{_{\rm BCl_2}}$ -51.0 ^c) +11.2 $\sqrt[n]{_{\rm Cl_3}}$ g) -43.1 +33 48 $_{\rm H_2C=CH=BCl_2}$ -52.4 ^d) +9.8 64 $\sqrt[n]{_{\rm S}}_{_{2}}$ g) -40.0 +3	44	$\sqrt{\mathbf{s}}$	-48.5	+13.7	61		-61.0 ^{h)}	+16.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	[™] N ^{BCl₂}	- 49.1	+13.1	62		48.5	+ 28.5
47 $(1 - \frac{1}{2})^{2 \text{ DCI}}_{\text{BCl}_2}$ - 51.0° + 11.2 $(1 - \frac{1}{2})^{2 \text{ CII}}_3$ 48 $H_2 C = CH - BCl_2$ - 52.4 ^d + 9.8 ⁶⁴ $(\sqrt{2})^{2 \text{ BCI}}_3$ g) - 40.0 + 3	46	H ₃ C O BCl ₂	- 44.6	+17.6	63	$\begin{pmatrix} S \\ g \end{pmatrix}_{2} = C I$	-43.1	+ 33.9
$\begin{array}{c} & \sim & BCl_{2} \\ & & \\ 48 & H_{2}C=CH=BCl_{2} \\ & & -52.4^{d_{1}} \\ & & +9.8 \end{array} \overset{64}{\qquad} \qquad $	47	\square	51.0°)	+11.2				
	48	\sim BCl ₂ H ₂ C=CH-BCl ₂	- 52.4 ^d)	+ 9.8	64		- 40.0	+ 37.0
49 \rightarrow BCl ₂ -59.4 ^{e)} +2.8 65 (CH ₂ =CH) ₂ BCl -54.8 ^{a)} +22	49	BCI2	59.4°)	+2.8	65	(CH ₂ =CH) ₂ BC1	54.8 ^{a)}	+ 22.2

Tab. 2. Chemische Verschiebungen δ^{11} B von Phenyl-, Thienyl-, 1-Methyl-2-pyrrolyl-, Furyl-, Cyclopentadienyl-, Vinyl- und Cyclopropylboranen $R_{3-n}BX_n$ (X = Alkyl, N(CH₃)₂, Cl, Br)

^{a)}
$$\Delta \delta^{11} B = \delta^{11} B \Big(\Big| C = C \Big| B \Big| \Big) - \delta^{11} B (CH_3 B \Big|).$$

^{b)} 1. c. ^{2b)}.

- ^{c)} B. Lochmann und T. P. Onak, J. Org. Chem. 38, 2552 (1973).
- ^{d)} l. c. ^{2a)}. ^{e)} l. c. ^{2c)}.

- K. Scott und W. S. Brey, Inorg. Chem. 8, 1703 (1969).
 ⁸⁾ Diese Verbindungen konnten nicht analysenrein gewonnen werden.
- h) P. I. Paetzold, Privatmitteil.

starker π -Wechselwirkung mit dem B-Atom stehen¹⁴). In der Reihe der Bis(dimethylamino)borane 37 - 40 beträgt die Verschiebungsdifferenz von der Phenyl- zur 2-Furyl-Verbindung 4.4 ppm, in der Reihe der Dimethylaminoborane 56-59 hingegen 16.6 ppm. Die Abschirmung des Borkerns ändert sich in der Reihe der Chlorborane 43-46 (10.2 ppm) und 61-64 (21.0 ppm) noch stärker, da das Cl-Atom weniger zur π -Rückbindung befähigt ist ¹⁵⁾ und das stärker π -acide Bor-Zentrum auch stärker an der π -Elektronendichte des Rings Anteil nimmt. Andererseits bedeutet dies aber auch, daß das π -System der Ringe durch X₂B-Gruppen hoher π -Akzeptorstärke stärker gestört wird als durch die elektronisch bereits sehr viel besser abgesättigte [(CH₃)₂N]₂B-Gruppierung. MO-Rechnungen und polarographische Untersuchungen stützen die Resultate der ¹¹B-NMR-Untersuchungen. Am stärksten ändert sich die Abschirmung des Bors in der BR₃-Reihe 25-28 mit 25.2 ppm.

Cyclopentadienylborane¹⁶⁾ verfügen über besser abgeschirmte B-Atome als die entsprechenden Vinylborane. Dieser Effekt dürfte darauf zurückzuführen sein, daß die Cyclopentadienylgruppe eine formal positive Ladung besser delokalisieren kann als eine Vinylgruppe: Nach dem ¹¹B-NMR-Kriterium liefert die Vinylgruppe etwas mehr π -Elektronendichte als die Phenylgruppe, während sich das konjugierte System des Cyclopentadiens zwischen der 3- und der 2-Thienylgruppe einordnet. Der Cyclopropylrest geht im Gegensatz zur C-C-π-Wechselwirkung im Cyclopropyldimethylcarbonium-Ion¹⁷⁾ nur eine sehr schwache Rückbindung ein, wie bereits früher aus ¹¹B- und ¹H-NMR-Daten geschlossen wurde^{2b)}. Bis -100°C konnte keine bestimmte Konformation eingefroren werden.

Obschon die δ^{11} B-Daten der hier untersuchten 2- und 3-Thienylborane einen BC- π -Bindungsanteil zwischen der Borylgruppe und dem Thienylrest nahelegen, ließ sich ¹H-NMR-spektroskopisch keine gehinderte Rotation um die B-C_{Thienvl}-Bindung in 6 bis herab zu -78 °C nachweisen, da die Protonen der (CH₃)₂B-Gruppe im ¹H-NMR-Spektrum nicht aufspalten. Nach einer einfachen VB-Betrachtung (s. u.) sollte bei 5-Ringheteroaromaten eine Borylgruppe in 2-Stellung mehr π -Ladungsdichte übernehmen als in 3-Stellung. Ein Vergleich der δ^{11} B-Werte von 8 und 9 bestätigt diese Voraussage; dies gilt auch für die 5-Alkylderivate 10 und 22 im Vergleich mit 7 und 21.

Die π -Wechselwirkung zwischen einer Borylgruppe und dem Heterocyclus läßt sich in den (1-Methyl-2-pyrrolyl)boranen durch Messen der ¹⁴N-Kernresonanz weiter belegen.

¹⁴⁾ W. Beck, W. Becker, H. Nöth und B. Wrackmeyer, Chem. Ber. 105, 2883 (1972).

¹⁵⁾ H. J. Becher, Z. Anorg. Allg. Chem. 271, 243 (1953); 291, 151 (1957).

¹⁶⁾ H. Grundke und P. I. Paetzold, Chem. Ber. 104, 1136 (1971).

¹⁷⁾ G. A. Olah, Carbokationen und elektrophile Reaktionen, Verlag Chemie, Weinheim 1973.

Sie sollte gemäß den oben angegebenen Grenzstrukturen zu einer geringeren Elektronendichte am Ring-N-Atom führen. Mit zunehmender Stärke der π -Wechselwirkung Ring/ B-Atom müßte mehr π -Elektronendichte vom N-Atom abgezogen werden und damit eine Tieffeldverschiebung des ¹⁴N-NMR-Signals folgen ¹⁸. In der Reihe:

verschiebt sich das ¹⁴N-NMR-Signal der 1-Methyl-2-pyrrolylgruppe mit steigender Akzeptorstärke des Borylrestes tieffeld. Allerdings sind die Unterschiede bei weitem nicht so groß wie bei den 1-Borylpyrrolen¹⁹. Relativ schlecht abgeschirmte N-Kerne der (CH₃)₂N-Gruppen in **39** (δ^{14} N + 327 ppm) und **52** (δ^{14} N + 286 ppm) belegen, daß die (CH₃)₂N-Gruppen als starke π -Donatoren in Anspruch genommen werden^{14, 19}.

Die gute Abschirmung der B-Atome in den 2-Furylboranen ist sicher nicht auf eine assoziative Wechselwirkung gemäß:

zurückzuführen, da δ^{11} B praktisch konzentrationsunabhängig ist und die chemischen Verschiebungen, insbesondere der Chloride **46** und **64**, bei denen man auf Grund der zu erwartenden starken Lewis-Acidität am ehesten mit einer Dimerisierung zu rechnen hat, eindeutig dreifach koordiniertes Bor belegen. Daß die 2-Furylgruppe ein guter π -Elektronendonator ist, zeigt die gute Abschirmung des Bors im Tri(2-furyl)boran (**28**), sowie in den Dimethylamino(2-furyl)boranen **40** und **59**. In **59** ist der Borkern sogar besser abgeschirmt als im Tris(dimethylamino)boran (**30**). In Übereinstimmung mit dem NMR-Befund weisen auch die pK_s -Werte der Furan- und Thiophenboronsäuren dem Furylrest bessere π -Donoreigenschaften zu als der Thienylgruppe¹¹).

Protonenresonanzspektren

Tab. 3 enthält die ¹H-NMR-Daten des Heterocyclenteils der hier untersuchten Boran-Derivate. Die Zuordnung läßt sich auf Grund der Kopplungskonstanten der Ringprotonen meist leicht vornehmen. Sie sind von derselben Größenordnung wie die in der Literatur beschriebenen^{20, 21)}. Mit ihrer Hilfe wird auch die Stellung der Borylgruppe im Heterocyclus eindeutig festgelegt. In erster Näherung reflektiert δ^1 H des Protons in 3-Stellung den jeweiligen Ladungsdichteabzug durch die Borylgruppe. Dies gilt auch für δ^1 H der

¹⁸⁾ M. Witanowski, L. Stefaniak, H. Januszewski, G. A. Webb und Z. Grabowski, Tetrahedron Lett. 1972, 637.

¹⁹⁾ H. Nöth und B. Wrackmeyer, Chem. Ber. 106, 1145 (1973).

²⁰⁾ J. Emsley, J. Feeney und L. H. Sutcliffe, High Resolution NMR-Spectroscopy, Pergamon Press, London 1966.

²¹⁾ S. Gronowitz und A. Bagge, Acta Chem. Scand. 22, 59 (1968).

	Verbindung	der F	δ ¹ Η (ppm Protonen	1) 3, 4, 5	Корг	lungskon J _{HH} (Hz	stanten
	-	3	4	5	J _{3/4}	$J_{3/5}$	$J_{4/5}$
6	⟨ _S ↓ _{B(CH₃)₂}	7.80	7.25	7.80	4.4	-	4.2
7	$\sqrt{S} \mathbb{L}_{B(C_2H_5)_2}$	7.80	7.25	7.85	4.9	0.9	3.5
8	<i>K</i> ^S <i>L</i> ^B ⊂	7.62	7.13	7.73	4.6	0.9	3.5
,	S B	7.91 (2	7.26 -H)	7.41	2.5 (J ₂); 1.2 (J	4.8 2/5)
10	H ₃ C S B(C ₂ H ₅) ₂	7.50	6.72		3.4 1.0 (<i>J</i> .	_ _{4/СН3}); 0.5	 (J _{3/СН3})
38	$\langle S \rangle_{B(N(CH_3)_2]_2}$	7.32	7.04	7.40	3.1	0.7	2.6
51 ((H ₃ C _H S _B CH ₃ CH ₃) ₂ N N(CH ₃) ₂	7.30	7.30		·	-	_
44	$\left(\sum_{S} \right)_{B \in C_1}$	7.90	7.25	8.00 .	4.4	1.4	3.5
20	((s))BCH3	7.85	7.29	8.00	4.5	1.0	3.8
21	$\left(\left\langle S^{n}\right\rangle \right)_{2}^{BC_{2}H_{5}}$	7.80	7.25	7.95	4.7	0.9	3.5
22	$\left(C_{2}H_{5} \land S \right)_{3} BC_{2}H_{5}$	7.28	7.01			Multiple	tts
57	$\left\langle \left\langle S \right\rangle \right\rangle_{2}^{BN(CH_{3})_{2}}$	7.50	7.06	7.21	4.6	1.3	3.4
62		7.90	7.26	8.10	4.5	1.0	3.5
26	$\langle \langle \zeta \rangle \rangle_{\mathfrak{s}}^{\mathbf{B}}$	7.78	7.28	7.93	4.2	0.9	3.7
11	$\left(\bigvee_{\substack{N \\ CH_3}} \mathbb{B}_{\{C_2 II_3\}_2} \right)$	7.05	6.12	6.84	3.8	1.7	2.3
12		6.86	6.08	6.80	3.8	1.5	2.5

Tab. 3. ¹H-NMR-Daten des Heterocyclenteils der untersuchten Boran-Derivate

	Verbindung	der H	δ ¹ Η (ppn Protonen	n) 3, 4, 5	Kopp	lungskon J _{HH} (Hz	stanten)
	_	3	4	5	J _{3/4}	$J_{3/5}$	$J_{4/5}$
39	CH ₃ CH ₃ CH ₃	6.07	6.07	6.65	-	2.15	2.15
52	CH ₃ CH ₃ CH ₃ N(CH ₃) ₂	6.03	bis	6.40	1	Multiplet	S
45	$\left(\begin{array}{c} \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \ \ \\ \$	6.67	6.56	7.33	3.4	1.7	2.0
58	$\begin{pmatrix} \mathbb{Z}_{N} \\ \mathbb{Z}_{H_{3}} \end{pmatrix}_{BN(CH_{3})_{2}}$	6.05 -	• 6.70		J	Multiplet	ts
63	$\left(\left(\begin{array}{c} N \\ N \\ C \\ H_3 \end{array} \right)_{BC1}$	6.52	6.20	6.92	3.6	1.6	2.2
27	$\left(\left(\begin{array}{c} \mathbb{A}_{\mathbf{N}} \\ \mathbb{A}_{\mathbf{s}} \\ \mathbb{C}_{\mathbf{H}_{\mathbf{s}}} \end{array} \right)_{\mathbf{s}} \\ \mathbb{C}_{\mathbf{H}_{\mathbf{s}}} \\ \mathbb{C}_{\mathbf{H}_{\mathbf{s}}} \\ \mathbb{C}_{\mathbf{s}} $	6.53	6.23	6.94	3.5	1.6	2.4
13	⁰ ^{B(C2H5)2}	7.30	6.50	7.75	3.0		1.4
40	$\left(\int_{O} \int_{B[N(CH_3)_2]_2} \right)$	6.56	6.36	7.56	3.2	0.7	1.6
46	H ₃ C BCl ₃	7.43	6.18		3.5 0.3 (J ₃	, (0.5	 (J _{4/CH3})
28	$\left\langle \mathcal{L}_{O}\right\rangle _{\mathbf{s}^{B}}$	7.86	6.56	7.78	3.6	0.55	1.65
	⟨ _S ⟩ _{CH_s}	6.63	6.75	6.89		Multiplet	ts
	⟨N CH₃ CH₃	5.61	5.50	6.17	3.40	1 .50	2.45
	√ √ CH ₁	5.90	6.19	7.20	3.12	1.03	2.0
	⟨ _S ∖ _{Sn(CH₃)₃}	7.21	7. 2 1	7.58		Multiplet	ts
	$ \begin{pmatrix} \mathbb{N} \\ \mathbb{N} \\ \mathbb{N} \\ \mathbb{C} \\ \mathbb{H}_3 \end{pmatrix}_3 $	6.05	6.32	6.73	3.5	1.6	2.4
	$\int_{O} \mathcal{L}_{Si(CH_3)_3}$	6.57	6.29	7.53	3.2	0.7	1.6

Tab. 3 (Fortsetzung)

Protonen in 5-Stellung, nicht jedoch in 4-Position. Die oben aufgeführte Mesomerie erklärt diesen Befund, wonach der Kohlenstoff in 4-Stellung im Gegensatz zu C-3 und C-5 keine formal positive Ladung übernimmt, wenn es zur π -Wechselwirkung zwischen C-2 und der Borylgruppe BX₂ kommt.

Zwischen $\delta^1 H_{C,3}$ und $\delta^{11}B$ besteht allerdings kein linearer Zusammenhang, da die Abschirmung des B-Atoms nicht alleine eine Funktion des π -Ladungsdichteanteils der Ring-Bor-Wechselwirkung ist. Dies gilt selbst noch für die Reihe der Alkyl-Derivate. Hier findet man allerdings, daß die Ringprotonen in 3-Stellung in der Reihe (Ring)_{3-n}BR_n (R = CH₃, C₂H₅) mit steigendem n besser abgeschirmt werden, während die Protonen in 5-Stellung eine schlechtere Abschirmung erfahren. Wir werten dies als Hinweis darauf, daß die positive Ladung vor allem am Heteroatom lokalisiert ist und daß die Tendenz zur Übernahme dieser Ladung in der Reihe N \ge O > S abnimmt.

Darstellung der borylierten Fünfringheterocyclen

Die Borylierung von Thiophenen, 1-Methylpyrrol und Furan gelingt durch Umsetzung der in 2- oder 3-Stellung metallierten Heterocyclen mit Trialkoxyboranen²²⁾. Im Falle des Thiophens bewährte sich auch die Redoxreaktion von Borjodiden mit Thienyljodiden²³⁾. Wir führten Borylgruppen nach drei Methoden ein: 1. durch direkte Umsetzung von Borhalogeniden mit in 2- bzw. 3-Stellung lithiiertem Heterocyclus, 2. durch Spaltung der Si – C-Bindung²⁴⁾ von Trimethylsilylderivaten durch Borhalogenide, 3. durch Umsetzung der stannylierten Fünfringe mit Borhalogeniden unter Ausnutzung der labilen Sn – C(sp²)-Bindung^{24, 25)}.

Methode 1: Obgleich die Bereitung der metallierten Fünfringsysteme aus Butyllithium und Heteroaromat nahezu quantitativ erfolgt²²⁾, erbrachte dessen Reaktion mit Chlorboranen die borylierten Verbindungen 8, 10, 11, 12, 21, 38, 39, 40, 51, 52 und 57 nur in 10-50 proz. Ausbeute. Arbeitet man bei relativ hoher Konzentration, dann entstehen 2,5-diborylierte Produkte. Dies ist der Fall bei der Umsetzung von 2-Thienyllithium mit (Dimethylamino)methylborchlorid. Hier fiel 51 statt 2-[(Dimethylamino)methylboryl]thiophen an. Unter ähnlichen Bedingungen erhielten wir aus 1-Methyl-2-pyrrolyllithium und (CH₃)₃SnCl 1-Methyl-2,5-bis(trimethylstannyl)pyrrol als Hauptprodukt. Während aus den 2-Lithiumderivaten des Thiophens und des 1-Methylpyrrols sowie dem 3-Thienyllithium und 1-Chlorborolan die Verbindungen 8, 9 und 12 gut zugänglich sind, führte 2-Furyllithium zu undefinierten Produkten. Analoges gilt – unter Einschluß von 2-Thienyllithium – für Reaktionen mit (C₂H₅)₂BCl und (CH₃)₂BBr. Aus 1:1-Ansätzen von 2-Thienyllithium und Diäthylborchlorid ließ sich nur Äthylbis(5-äthyl-2-thienyl)boran (22) gewinnen. Glatt bildete sich hingegen 10 aus (5-Methyl-2-thienyl)lithium und Diäthylborchlorid.

Umsetzungen von 2-Furyllithium mit Diäthylborchlorid verlaufen unübersichtlich. Nach ¹H-NMR-Daten erfolgen wahrscheinlich Ringerweiterungsreaktionen ²⁶). Das als Reaktionsprodukt erwartete 13 ließ sich nach Methode 3 darstellen.

Methode 2: Die in 2-Stellung $(CH_3)_3$ Si-substituierten Fünfringheterocyclen erhält man leicht aus der Li-Verbindung und $(CH_3)_3$ SiCl. Die Alkylborhalogenide $(C_2H_3)_2$ BCl, $(CH_3)_2$ BBr, $(CH_3)_2$ NB(CH_3)Cl reagieren mit diesen Silylderivaten weder zu Addukten noch unter SiC-Spaltung. BCl₃ erweist sich aber als hinreichend reaktiv und führt, wenn auch in schlechter Ausbeute, zu den Dichlorboranen 45 und 46.

²²⁾ S. O. Lawesson, Ark. Kemi 10, 387 (1957).

²³⁾ W. Siebert, Chem. Ber. 103, 2308 (1970).

²⁴⁾ J. R. Pratt, F. H. Pinkerton und S. F. Thames, J. Organomet. Chem. 38, 29 (1972).

²⁵⁾ K. Niedenzu, J. Organomet. Chem. Rev. 1, 305 (1966).

²⁶⁾ A. Suzuki, N. Miyanara und M. Itoh, Tetrahedron Lett. 1971, 2775.

Methode 3: Die im Vergleich zur SiC-Bindung stärker polare SnC-Bindung wird durch Borhalogenide sehr leicht gespalten²⁵⁾. Beim Einsatz der Trimethylstannylderivate des Furans, Thiophens und 1-Methylpyrrols kann die Methylierung des Borhalogenids in Konkurrenz zur Borylierung der Heterocyclen treten. Diese erwies sich jedoch als weniger gravierend als Schwierigkeiten, die mit der Abtrennung der Organozinn-Verbindungen von den Organoboranen auftraten. Sie ergaben sich insbesondere bei aminogruppen-haltigen Organoboranen, ein Hinweis auf eine lose Adduktbildung zwischen Organylzinnhalogenid und Aminoboran²⁷⁾.

Meist erfolgen die Umsetzungen exotherm. Ausgehend von Tetra(2-thienyl)stannan erhält man 6, 7, 20, 21, 44 und 62. Dimethylbis(1-methyl-2-pyrrolyl)stannan liefert mit BCl₃ bzw. Cl₂BN(CH₃)₂ die Borane 58 und 63, während das Di(2-furyl)dimethylstannan je nach Molverhältnis Chlordi(2furyl)boran (64) bzw. Tri(2-furyl)boran (28) ergibt. 13 resultiert aus Diäthylborchlorid und (2-Furyl)trimethylstannan, Tri(2-thienyl)boran (26) aus Di(2-thienyl)borchlorid und Trimethyl(2thienyl)stannan.

Da die Alkylborane 20 und 21 bis mindestens 150 °C stabil sind und nicht in BR₃ und Tri(2thienyl)boran disproportionieren, untersuchten wir auch die Phenylierung von Methylbordibromid und Dimethylborbromid mit Tetraphenylzinn. In siedendem Benzol reagiert (CH₃)₂BBr nicht. Das stärker Lewis-acide CH₃BBr₂ setzt sich mit Sn(C₆H₅)₄ aber bereits bei Raumtemperatur zu C₆H₅(CH₃)BBr um. Überschüssiges Sn(C₆H₅)₄ phenyliert weiter zu (C₆H₅)₂BCH₃.

Bei der Durchführung der präparativen Arbeiten unterstützten uns cand. chem. G. Rub und cand. chem W. Kristof. Analytische Daten verdanken wir Frau L. Moser und Herrn K. Schönauer, ¹H-NMR-Spektren nahm z. T. Fräulein G. Bienlein auf. Ihnen danken wir für die Mithilfe. Dank gebührt auch dem Fonds der Chemischen Industrie für ein Stipendium an B. W. und Förderung unserer Arbeiten sowie der BASF Aktiengesellschaft.

Experimenteller Teil

Die ¹H-NMR-Spektren wurden mit einem Varian-A-60-NMR-Gerät aufgenommen. Als Standard diente internes TMS; Verschiebungen mit positiven Vorzeichen liegen bei tiefem Feld relativ zu TMS.

Die ¹¹B- und ¹⁴N-NMR-Spektren wurden mit einem Varian-HA-100-NMR-Spektrometer bei 32.1 bzw. 7.23 MHz registriert und nach der Seitenbandtechnik ausgewertet. Als Standards dienten BF₃ · O(C₂H₅)₂, bzw. eine gesättigte wäßrige NaNO₃-Lösung (beide extern). Verschiebungen mit positiven Vorzeichen beziehen sich auf höheres Feld relativ zum Standard.

Die präparativen Arbeiten erfolgten unter Luft- und Feuchtigkeitsausschluß in trockener Stickstoffatmosphäre. Die Lösungsmittel wurden nach gängigen Verfahren gereinigt und getrocknet. Infolge der extremen Sauerstoff- und Hydrolyseempfindlichkeit einiger Verbindungen (etwa 6, 19 u. a.) ergaben die elementaranalytischen Bestimmungen nicht immer zufriedenstellende Daten, obwohl ¹H-NMR-spektroskopisch reine Verbindungen vorlagen. Hinzu kommt, daß der Wert für Kohlenstoff wegen Bor-Carbidbildung trotz oxidierender Zusätze bei der Verbrennung, oft zu niedrig ausfällt.

Die Ausgangsverbindungen wurden nach literaturbekannten Verfahren gewonnen: Methylbordibromid²⁸⁾, Dimethylborbromid²⁸⁾, Äthylbordichlorid²⁹⁾, Diäthylborchlorid²⁹⁾, 1-Chlorborolan³⁰⁾, (Dimethylamino)methylborbromid³¹⁾, Bis(dimethylamino)borchlorid³²⁾, (Dimethyl-

²⁷⁾ I. Geisler, Diplomarbeit, Univ. Marburg 1967.

²⁸⁾ P. I. Paetzold und W. Hansen, Z. Anorg. Allg. Chem. 345, 79 (1966).

²⁹⁾ H. Nöth und W. Storch, Synth. Inorg. Met.-Org. Chem. 1, 197 (1971).

³⁰⁾ R. Köster und G. Benedikt, Angew. Chem. **75**, 346 (1963); Angew. Chem., Int. Ed. Engl. **2**, 219 (1963).

³¹⁾ H. Nöth und P. Fritz, Z. Anorg. Allg. Chem. 324, 270 (1963).

³²⁾ W. Gerrard, M. F. Lappert und C. A. Pearce, J. Chem. Soc. 1957, 381.

	Tab. 4. Physikalisch	e und analytische Daten	von borylierten 5-l	Ringheteroaromaten	
Verb.	Name	Sdp. (°C/Torr)	DarstMethode % Ausb.	Summenformel (MolMasse)	Analyse C H N
Q	Dimethyl(2-thienyl)boran	41 - 43/12	3A 44	C ₆ H ₉ BS (124.0)	Ber. 58.11 7.31 Gef. zu empfindlich
٢	Diäthyl(2-thienyl)boran	44 46/1	3A 51	C ₈ H ₁₃ BS (152.1)	Ber. 63.19 8.62 – Gef. 61.21 8.22 –
œ	1-(2-Thienyl)borolan	39-41/1	1A 35	C ₈ H ₁₁ BS (150.1)	Ber. 64.04 7.39 – Gef. 63.20 7.50 –
6	1-(3-Thienyl)borolan	60 - 63/1	1C 25	C ₈ H ₁₁ BS (150.1)	Ber. 64.04 7.39 – Gef. 63.87 8.02 –
10	Diäthyl(5-methyl-2-thienyl)- boran	59 — 63/1	1 A 28	C ₉ H ₁₅ BS (166.1)	Ber. 65.08 9.10 – Gef. 64.64 9.01 –
11	Diäthyl(1-methyl-2- pyrrolyl)boran	54 — 55/1	1B 48	C ₉ H ₁₆ BN (149.0)	Ber. 72.52 10.82 9.40 Gef. 72.25 11.33 8.67
12	1-(1-Methyl-2-pyrrolyl)borolan	43/1	1 B 20	C ₉ H ₁₄ BN (147.0)	Ber. 73.52 9.60 9.53 Gef. 72.92 8.79 8.95
13	Diäthyl(2-furyl)boran	40 - 41/12	3 B -	C ₈ H ₁₃ BO (136.0)	Ber. 70.65 9.63 – Gef. mit Sn-Ver- bindung verun- reiniet
19	Methyldiphenylboran	105 - 108/1	3C 55	C ₁₃ H ₁₃ B (180.1)	Ber. 86.72 7.28 – Gef. zu empfindlich
20	Methyldi(2-thienyl)boran	120-124/1	3A -	C ₉ H ₉ BS ₂ (192.1)	Ber. 56.27 9.07 – Gef. zu empfindlich
21	Äthyldi(2-thienyl)boran	110/1	3A 31	C ₁₀ H ₁₁ BS ₂ (206.1)	Ber. 58.27 5.38 – . Gef. 55.73 4.92 –
22	Äthylbis(5-äthyl-2-thienyl)- boran	72/1	1 A -	C ₁₄ H ₁₉ BS ₂ (262.2)	Ber. 64.12 8.07 – Gef. 63.45 7.05 –
26	Tri(2-thienyl)boran	Schmp. 98 – 104 °C	3D 65	C ₁₂ H ₉ BS ₃ (260.2)	Ber. 55.38 3.49 Gef. 56.71 3.22

~

1976

1085

71*

		Tab. 4 (Fort	tsetzung)		
Verb.	Name	Sdp. (°C/Torr)	DarstMethode % Ausb.	Summenformel (MolMasse)	C H N
28	Tri(2-furyl)boran	115-120/1	3D 35	C ₁₂ H ₉ BO ₃ (212.0)	Ber. 67.98 4.28 – Gef. 65.97 4.44 –
38	Bis(dimethylamino)(2-thienyl)- boran	68 - 71/1	1A 17	C ₈ H ₅ BN ₂ S (182.1)	Ber. 52.77 8.30 15.38
39	Bis(dimethylamino)(1-methyl-2- pyrrolyl)boran	51 - 53/1	1 B 45	C ₉ H ₁₈ BN ₃ (179.1)	Ber. 60.37 10.13 23.47 Gef. 57.77 10.29 22.50
40	Bis(dimethylamino)(2-furyl)- boran	38-42/1	1B 15	C ₈ H ₁₅ BN ₂ O (166.0)	Ber. 57.87 9.11 16.87 Gef. 56.38 9.24 16.72
4	Dichlor(2-thienyl)boran	51-53/1	3A 78	C ₄ H ₃ BCl ₂ S (164.9)	Ber. 29.14 1.83 – Gef. 28.24 1.94 –
45	Dichlor(1-methyl-2-pyrrolyl). boran	53 — 54/1	2 26	C ₅ H 6B Cl ₂ N (161.8)	Ber. 37.11 3.74 8.66 Gef. 33.96 3.82 8.37
46	Dichlor(5-methyl-2-furyl)boran	28/1	2 22	C ₅ H ₅ BCl ₂ O (162.8)	Ber. 36.89 3.10 – Gef. 37.92 3.86 –
51	2,5-Bis[(dimethylamino)methyl- boryl]thiophen	95/1	1 A 22	C ₁₀ H ₂₀ B ₂ N ₂ S (220.0)	Ber. 54.11 9.08 12.62 Gef. 56.18 9.74 12.31
52	(Dimethylamino)methyl (1-methyl-2-pyrrolyl)boran	42-43/1	1B 37	C ₇ H ₁₅ BN ₂ (150.0)	Ber. 64.04 10.08 18.67 Gef. 62.67 10.01 17.95
57	(Dimethylamino)di(2-thienyl)- boran	68 - 71/1	1A 17	C ₁₀ H ₁₂ BNS ₂ (227.1)	Ber. 52.88 15.32 6.17 Gef. 54.79 5.27 7.56
58	(Dimethylamino)bis(1-methyl- 2-pyrrolyl)boran	8587/1	3D	C1 ₂ H18BN3 (215.0)	Ber. 67.03 8.44 19.54 Gef. mit Sn-Verbin- dung verun- reinigt
62	Chlordi(2-thienyl)boran	172/1	3 A 40	C ₈ H ₆ BCIS ₂ (212.5)	Ber. 45.21 2.85 Gef. 44.44 2.91
63	Chlorbis(1-methyl-2- pyrrolyl)boran	141 - 142/1	3D 41	C ₁₀ H ₁₂ BCIN ₂ (206.5)	Ber. 58.18 5.86 13.57 Gef. 53.64 6.24 11.78

Jahrg. 109

amino)bordichlorid ³³⁾, Tetra(2-thienyl)stannan ³⁴⁾, Trimethyl(2-thienyl)stannan ²⁴⁾, Di(2-furyl)dimethylstannan ^{35a)}, Dimethylbis(1-methyl-2-pyrrolyl)stannan ^{35b)}, (2-Furyl)trimethylsilan ³⁶⁾, Trimethyl(5-methyl-2-furyl)silan ^{35c)}, Trimethyl(1-methyl-2-pyrrolyl)silan ³⁷⁾, Trimethyl(1-methyl-2pyrrolyl)stannan ^{35d)}, 1-Phenylborolan ^{38a)} und 1-Phenylborinan ^{38b)}.

Die Heteroaromaten wurden als Handelspräparate bezogen und vor Verwendung destilliert. Butyllithium in Hexan wurde von der Metallgesellschaft AG und Tetraphenylzinn von der Hoechst AG bezogen.

Die physikalischen und analytischen Daten der neuen Verbindungen befinden sich, soweit erhältlich, in Tab. 4. Jede Darstellungsmethode wird an Hand eines typischen Beispiels beschrieben.

Diäthyl(2-thienyl)boran (7) (Methode 3A): 3.4 g Tetra(2-thienyl)stannan (7.5 mmol) wurden in einem Zweihalskolben mit Tropftrichter und Rückflußkühler suspendiert. Unter Rühren tropfte man 1.6 g $(C_2H_5)_2BCl$ (15.3 mmol), gelöst in 10 ml Benzol, zu. Nach 3stdg. Rückflußkochen zeigte das ¹¹B-NMR-Spektrum der Mischung kein $(C_2H_5)_2BCl$ mehr an. Die fraktionierte Destillation ergab 1.15 g (51 %) 7 als farblose oxidationsanfällige Flüssigkeit vom Sdp. 44-46 °C/1 Torr.

Bei allen Umsetzungen nach 3A war es zweckmäßig, das Boran in etwa zweifachem Überschuß einzusetzen, da die entstehenden schwerflüchtigen Dihalogendi(2-thienyl)stannane leicht von den flüchtigen Boranen abzutrennen sind.

Diäthyl(2-furyl)boran (13) (Methode 3B): Wie bei 3A wurden 2.1 g $(C_2H_5)_2BCl$ (20 mmol) in 10 ml Benzol vorgelegt und unter Rühren langsam 4.7 g (2-Furyl)trimethylstannan (20 mmol), gelöst in 20 ml Benzol, zugesetzt. Die Reaktion ist exotherm. Trotz wiederholter Destillation war 13 noch mit Zinnverbindungen verunreinigt. Das Gemisch siedete bei 40-41 °C/12 Torr. Nach ¹¹B-NMR-Spektrum enthielt es als einzige Borverbindung 13. Eingesetztes (C_2H_5)₂BCl hatte quantitativ reagiert.

Methyldiphenylboran (19) (Methode 3C): 9.5 g Tetraphenylzinn (20 mmol) löste man in 30 ml Benzol und tropfte 3.7 g CH₃BBr₂ (20 mmol) in 20 ml Benzol unter Rühren zu. Nach Abklingen der mäßig exothermen Reaktion lieferte die Destillation eine Fraktion vom Sdp. 69-74 °C/ 1 Torr (54) und eine zweite, kleinere Fraktion vom Sdp. 103-108 °C/1 Torr (19). Hielt man die Reaktionslösung 3 h unter Rückfluß, so erhielt man nur wenig 54 und 19 als Hauptprodukt.

Tri(2-thienyl)boran (26) (Methode 3D): 4.3 g Trimethyl(2-thienyl)stannan (17 mmol) wurden bei -78 °C in 10 ml Hexan vorgelegt und unter Rühren mit 3.7 g Chlordi(2-thienyl)boran (17 mmol) in 10 ml Hexan versetzt. Nach dem Auftauen wurde das Lösungsmittel abgezogen. Das Sublimationsprodukt (bis 40 °C/1 Torr) erwies sich als die theoretisch zu erwartende Menge Trimethylchlorstannan. Der Rückstand wurde bei tiefer Temperatur aus Hexan umkristallisiert und lieferte 26 in farblosen Kristallen vom Schmp. 98 – 104 °C (nicht korr.), Ausb. 2.8 g (65 %).

1-(2-Thienyl)borolan (8) (Methode 1A): 1.4 g Thiophen (20 mmol) wurden in 10 ml Diäthyläther mit der äquivalenten Menge Butyllithium in Hexan durch 3stdg. Rückflußkochen zum 2-

 ³³⁾ A. J. Bannister, N. N. Greenwood, B. P. Straughan und J. Walker, J. Chem. Soc. 1964, 995.
 ³⁴⁾ E. Krause und G. Renwanz, Ber. Deut. Chem. Ges. 60, 1982 (1927).

 ³⁵⁾ Die Verbindungen wurden durch Umsetzung der entsprechenden Lithiumsalze mit (CH₃)₃SnCl, (CH₃)₃SiCl und (CH₃)₂SnBr₂ hergestellt und durch Destillation gereinigt. Die Sdp. sind:
 ^{35a)} 65 - 66 °C/1 Torr. - ^{35b)} 118 - 121 °C/1 Torr. - ^{35c)} 63 - 64 °C/30 Torr. - ^{35d)} 75 - 80 °C/1 Torr.

³⁶⁾ R. A. Benkeser und R. B. Currie, J. Amer. Chem. Soc. 70, 1780 (1948).

³⁷⁾ B. A. Ashby, J. Organomet. Chem. 5, 405 (1966).

³⁸⁾ Die Verbindungen erhielten wir durch die Reaktion von BrMg[CH₂]₄MgBr bzw. BrMg[CH₂]₅MgBr mit C₆H₅BCl₂ und anschließende Destillation. – ^{38a)} Sdp. 40-42°C/ 1 Torr. – ^{38b)} Sdp. 85-90°C/1 Torr.

Thienyllithium umgesetzt. Zu der Suspension wurde bei Raumtemp. eine Lösung von 2.0 g 1-Chlorborolan (20 mmol) in Hexan unter Rühren getropft. Die Umsetzung erfolgte mäßig exotherm. Nach Abtrennung des Unlöslichen lieferte die fraktionierte Destillation 1.1 g 8 (35 %) als farblose Flüssigkeit vom Sdp. 39-41 °C/1 Torr.

Methode 1B: Die Reaktionsführung und die Aufarbeitung sind identisch mit 1A. Auch bei den Lithiumsalzen des 1-Methylpyrrols und des Furans wurde bei der Darstellung Diäthyläther zugesetzt. Andernfalls wurde bei 2-Furyllithium weitgehende Zersetzung, bei (1-Methyl-2-pyrrolyl)lithium und (2-Thienyl)lithium u. a. auch 2,5-Disubstitution beobachtet.

1-(3-Thienyl)borolan (9) (Methode 1C): 4.9 g (3-Thienyl)bromid (30 mmol) wurden in 10 ml Diäthyläther auf -78 °C gekühlt und unter Rühren mit der äquivalenten Menge Butyllithium in Hexan versetzt. Nach kurzer Zeit bildete sich ein farbloser Niederschlag. Man rührte noch 30 min bei -78 °C und gab dann eine Lösung von 3.05 g 1-Chlorborolan in 30 ml Hexan zu. Nach dem Auftauen wurde kurz zum Rückfluß erhitzt, dann vom Unlöslichen abgetrennt und das Lösungsmittel verjagt. Die Destillation erbrachte 1.23 g 9 (25 %) als farblose Flüssigkeit (Sdp. 60-63 °C/ 1 Torr), die im Kühlschrank zu nadelförmigen Kristallen erstarte.

Dichlor (1-methyl-2-pyrrolyl)boran (45) (Methode 2): 7.92 g Trimethyl (1-methyl-2-pyrrolyl)silan (51 mmol) wurden bei -78 °C unter Rühren zu etwa 150 mmol BCl₃ getropft. Dabei entstand ein Niederschlag, der sich beim langsamen Erwärmen wieder löste. Den BCl₃-Überschuß ließ man verdampfen. Der verbliebene Rückstand ergab bei der Destillation, neben (CH₃)₃SiCl, 45 als farblose Flüssigkeit vom Sdp. 53 - 54 °C/1 Torr (2.1 g; 26%). 45 ist außerordentlich empfindlich und verfärbt sich bei Raumtemp. schnell gelbbraun und erstarrt nach kurzer Zeit. Die NMR-spektroskopischen Daten in Lösung bleiben jedoch davon unbeeinflußt.

[335/75]